...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

Displaying items by tag: Earth observation

LSTM is a next generation ESA mission within the Copernicus program to complement Sentinel observation capabilities with high spatio-temporal resolution TIR (Thermal Infrared) observations over land and coastal regions in support of agriculture management services,and possibly a range of additional applications and services. The primary objective is to enable monitoring the evapotranspiration (ET) rate at European field scale by capturing the variability of Land Surface Temperature (LST) (and hence derived ET) allowing more robust estimates of field-scale water productivity. 

Published in Projects

TARANIS is a CNES microsatellite mission, proposed by LPCE (Laboratoire de Physique et de Chimie de l'Environnement), and CEA (Commissariat a l'Energie Atomique) of France in collaboration with institutions from USA, Denmark, Japan, the Czech Republic and Poland. The TARANIS mission is devoted to the study of transient event energetic mechanisms that generate transient luminous emissions and gamma ray flashes in the terrestrial atmosphere above the thunderstorm areas. These emissions are a manifestation of a coupling between atmosphere, ionosphere and magnetosphere via intense transitory processes implying avalanching relativistic electrons with energies up to 30 MeV.

Note: In ancient mythology, TARANIS was the Gallic god of thunder and lightning.

Published in Projects

Ingenio, Spanish for “ingenuity”, is an optical high-resolution imaging mission of Spain - the flagship mission of the Spanish Space Strategic Plan 2007-2011. The mission is devoted to providing high resolution multispectral land optical images to different Spanish civil, institutional and government users, and potentially to other European users in the framework of Copernicus (formerly GMES) and GEOSS. The overall mission objective is to provide information for applications in cartography, land use, urban management, water management, environmental monitoring, risk management and security. The requirements call for panchromatic imagery of 2.5 m and multispectral imagery of 10 m resolution. 1) 2)

Published in Projects

The Sentinel-3 (S3) mission of ESA and the EC is one of the elements of the GMES (Global Monitoring for Environment and Security) program, which responds to the requirements for operational and near-real-time monitoring of ocean, land and ice surfaces over a period of 20 years. The topography element of this mission will serve primarily the marine operational users but will also allow the monitoring of sea ice and land ice, as well as inland water surfaces, using novel observation techniques.The Sentinel-3 mission is designed as a constellation of two identical polar orbiting satellites, separated by 180º, for the provision of long-term operational marine and land monitoring services. The operational character of this mission implies a high level of availability of the data products and fast delivery time, which have been important design drivers for the mission. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)

The Sentinel-3 program represents a series of operational spacecraft over the envisioned service period to guarantee access to an uninterrupted flow of robust global data products.

Published in Projects

Sentinel-2 is a multispectral operational imaging mission within the GMES (Global Monitoring for Environment and Security) program, jointly implemented by the EC (European Commission) and ESA (European Space Agency) for global land observation (data on vegetation, soil and water cover for land, inland waterways and coastal areas, and also provide atmospheric absorption and distortion data corrections) at high resolution with high revisit capability to provide enhanced continuity of data so far provided by SPOT-5 and Landsat-7. 1) 2) 3) 4) 5) 6) 7) 8)

Published in Projects
Tuesday, 27 October 2020 12:58

Magnolia Terra LLC

Magnolia Terra LLC, Moscow, Russia, is a privately-owned company with a mission to provide cost effective quality Remote Sensing Imagery services and to contribute to the development of new technologies. The main goal of development of a wide range of Magnolia-family software products (Magnolia rsLab, Magnolia iMATH, Magnolia psDraw) is to provide solutions for virtually every stage of the satellite data acquisition and satellite data analysis processes.

A resident of the Skolkovo Innovation Centre, the Space Technology and Telecommunications Cluster. Reg. no. 1120388.

Specialties: Earth observation, remote sensing, satellite imagery, software development, geophysics, environmental science.

Published in Organisations
Tuesday, 27 October 2020 12:35

Magnolia Terra LLC

Magnolia Terra LLC, Moscow, Russia, is a privately-owned company with a mission to provide cost effective quality Remote Sensing Imagery services and to contribute to the development of new technologies. The main goal of development of a wide range of Magnolia-family software products (Magnolia rsLab, Magnolia iMATH, Magnolia psDraw) is to provide solutions for virtually every stage of the satellite data acquisition and satellite data analysis processes.

A resident of the Skolkovo Innovation Centre, the Space Technology Cluster. Reg. no. 1120388.

Specialties: Earth observation, remote sensing, satellite imagery, software development, geophysics, environmental science.

Published in Technology
Wednesday, 06 May 2020 07:14

Showcase your space projects on COPERNICAL.COM

Copernical is calling on all space professionals to contribute to our mission to curate global space assets.   Login or register on our site www.copernical.com and add details of your projects to the space asset register. You can then own this entry and maintain the description of the project, logos, image, contact details and literature attachments.  The project entry is intended to describe the project, its aim and objectives within the space industry.  Upload any project documentation and specifications that provide as much information as possible. The Copernical registry is a free not for profit service for the global space industry.

Published in News
Monday, 31 March 2014 15:47

Flock 1 constellation (Dove satellites)

Flock 1 is a fleet of 28 small satellites. Its deployment began on 11 Feb 2014 from the International Space Station. It was at that date the largest single constellation of Earth-imaging satellites ever to launch into space.

Built and operated by Planet Labs of San Francisco, the Flock 1 small satellites are individually referred to as Doves.

The Dove satellites are part of a class of miniature satellites often called CubeSats. These small satellites will capture imagery of Earth for use in humanitarian, environmental and commercial applications. Data collected by the Flock 1 constellation will be universally accessible to anyone who wishes to use it.

Published in Projects

The Membrane Optical Imager for Real-Time Exploitation (MOIRE) program is a technology demonstration for the Defense Advanced Research Projects Agency (DARPA) that will provide persistent, real-time, tactical video to the war fighter. To accomplish this capability, MOIRE is incrementally demonstrating the technologies needed to develop a large lightweight space-based telescope for geosynchronous orbit using advanced diffractive membrane optics.

MOIRE plans to demonstrate the manufacturability of large collection area telescopes (up to 20 meters), large structures to hold the optics tight and flat, and also demonstrate the additional optical elements needed to turn a diffraction-based optic into a wide bandwidth imaging device.

While the membrane is less efficient than glass, which is nearly 90 percent efficient, its much lighter weight enables creating larger lenses that more than make up the difference. The membrane is also substantially lighter than glass. Based on the performance of the prototype, a new system incorporating MOIRE optics would come in at roughly one-seventh the weight of a traditional system of the same resolution and mass. As a proof of concept, the MOIRE prototype validates membrane optics as a viable technology for orbital telescopes.

With a proposed diameter of 20 meters, MOIRE's membrane optic "lens" would be the largest telescope optics ever made and dwarf the traditional glass mirrors used in the world's most famous telescopes.

Space telescope size comparison (click image to enlarge) - (copyright DARPA)

Published in Projects
Page 1 of 9