...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Retired stars join the young stars' party in the sky: how evolved stars contribute to the early heating of Earth

Retired stars join the young stars' party in the sky: how evolved stars contribute to the early heating of Earth

Written by  Thursday, 27 July 2023 08:39
Write a comment
Sheffield UK (SPX) Jul 27, 2023
Researchers from the University of Sheffield and Imperial College London have spotted a 'retired' Asymptotic Giant Branch (AGB) star passing through a young star-forming region, something which was previously thought not to happen. The researchers identified this interaction occurred in one of the places where they think stars like our Sun must form, using the Gaia satellite, a 740m euro
ADVERTISEMENT
Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas
Retired stars join the young stars' party in the sky: how evolved stars contribute to the early heating of Earth
by Shemina Davis
Sheffield UK (SPX) Jul 27, 2023

Researchers from the University of Sheffield and Imperial College London have spotted a 'retired' Asymptotic Giant Branch (AGB) star passing through a young star-forming region, something which was previously thought not to happen.

The researchers identified this interaction occurred in one of the places where they think stars like our Sun must form, using the Gaia satellite, a 740m euro mission to map the positions of billions of stars in our Galaxy.

The most recent release of data from Gaia, Data Release 3, means that the research team can accurately pinpoint interloping stars. These interlopers are stars that did not form in the region, but are just passing through. The team has previously found young interloping stars, but now has found a much older, evolved star, known as an AGB, passing through a region.

Previous research has shown that these retired AGB stars produce large quantities of radioactively unstable chemical elements, Aluminium-26 and Iron-60. Aluminium-26 and Iron-60 were delivered to our young Solar system at the epoch of planet formation, and are thought to dominate the early internal heating of Earth.

Ultimately, Aluminium-26 and Iron-60 may even have indirectly contributed to plate tectonics on our planet, which helps sustain a breathable atmosphere on Earth. The research team has calculated how much Aluminium-26 and Iron-60 from the AGB could be captured by a star like our Sun as it formed its planets.

Dr Richard Parker, a lecturer in Astrophysics in Department of Physics and Astronomy at the University of Sheffield, and the lead author of the study, said: "Until now, researchers have been sceptical that these old, evolved stars could ever meet young stars that are forming planets, so this discovery reveals much more about the dynamics, relationships and journeys of stars.

"By showing that AGB stars can meet young planetary systems, we have shown that other sources of Aluminium-26 and Iron-60, such as the winds and supernovae of very massive stars, may not be required to explain the origin of these chemical elements in our Solar System."

Dr Christina Schoettler, an Astrophysics research associate in the Department of Physics at Imperial College London, identified the AGB star in the Gaia DR3 data. She says: "Gaia is revolutionising our ideas about how stars form, and then subsequently move in the Galaxy. This discovery of an old, evolved star in close proximity to young planet-forming stars is a wonderful example of the power of serendipity in scientific research."

The next step of this research is to search for other evolved stars in young star-forming regions to establish how common these retired interlopers are.

Related Links
University of Sheffield
Explore The Early Earth at TerraDaily.com


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...