...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • High-Velocity Impacts Explored in Experimental Study

High-Velocity Impacts Explored in Experimental Study

Written by  Wednesday, 12 July 2023 02:16
Write a comment
Los Angeles CA (SPX) Jul 12, 2023
Scientists from Johns Hopkins University have conducted a groundbreaking experimental study to unravel the mysteries behind impact flashes generated by high-velocity impacts. With debris and meteoroids posing a significant threat to satellites, space probes, and hypersonic craft, understanding the nature and characteristics of these impact flashes is crucial for ensuring the safety and durabilit
ADVERTISEMENT
Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas
High-Velocity Impacts Explored in Experimental Study
by Brad Bartz
Los Angeles CA (SPX) Jul 12, 2023

Scientists from Johns Hopkins University have conducted a groundbreaking experimental study to unravel the mysteries behind impact flashes generated by high-velocity impacts. With debris and meteoroids posing a significant threat to satellites, space probes, and hypersonic craft, understanding the nature and characteristics of these impact flashes is crucial for ensuring the safety and durability of vital space assets.

The study, led by Gary Simpson, K.T. Ramesh, and their team, focused on investigating impact flashes by propelling stainless steel spheres into an aluminum alloy plate at an astonishing speed of three kilometers per second (about 6,700 miles per hour), which is over nine times the speed of sound. To capture these ephemeral moments, ultra-high-speed cameras and high-speed spectroscopy were employed to photograph and measure the color and brightness of the impact flashes.

Upon impact, the researchers observed a luminous disc expanding around the impacting sphere. Within a few millionths of a second, this disc transformed into a captivating floral shape, resembling the petals of a flower. The transformation occurred as fragments ejected from the impact crater converged to form an ejecta cone, generating petal-like projections at the outer edge. Based on their observations, the researchers concluded that these impact flashes originate from the fragmentation of an ultra-fast jet of material ejected from the colliding bodies.

Interestingly, minuscule condensed fragments from the jet interact with the surrounding atmosphere, creating an intensely bright radiating cloud of vapor. This cloud expands at an astonishing speed of over ten kilometers per second (equivalent to more than 22,000 miles per hour). Remarkably, the authors of the study highlight that the composition of the target material and the size of the jetted particles can be inferred from the properties of the impact flash.

"Hypervelocity impacts occur in a wide range of aerospace and planetary applications, with varying impact velocities and ambient atmospheres," explained the researchers. "The experimental conditions explored in our study, for example, simulate the ambient atmospheric density at an altitude of approximately 30 km. This is particularly relevant to the upper and lower operational envelopes of high-velocity air-breathing and boost-glide vehicles, respectively."

The findings from this experimental study shed new light on the intricate nature of impact flashes generated by high-velocity impacts. By deciphering the characteristics and behavior of these flashes, scientists can enhance our understanding of the physics behind hypervelocity impacts and develop more robust and resilient space technologies.

The implications of this research extend beyond the realm of fundamental science. With the ever-increasing utilization of satellites, space probes, and hypersonic craft, safeguarding these assets from potential damage caused by impacts is of paramount importance. By unraveling the secrets of impact flashes, scientists and engineers can design more effective shielding mechanisms and protective measures to mitigate the risks associated with high-velocity impacts.

As we venture further into space exploration, our understanding of the forces at play during hypervelocity impacts will continue to evolve. The quest to decode the mysteries of impact flashes represents a significant step forward in our pursuit of safer and more reliable space technologies. The research conducted by Simpson, Ramesh, and their team lays a solid foundation for future investigations in this field and paves the way for innovative solutions to protect our space infrastructure.

Research Report:Fine structure of the impact flash and ejecta during hypervelocity impact

Related Links
Johns Hopkins University
Space Technology News - Applications and Research


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...