...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Radiation shielding: MAPbI3/epoxy composites exhibit superior performance

Radiation shielding: MAPbI3/epoxy composites exhibit superior performance

Written by  Friday, 16 December 2022 11:32
Write a comment
Changchun, China (SPX) Dec 14, 2022
As the rapid development of aerospace and nuclear industries, higher requirements are raised for the service life of detectors and the safety of staff. Gamma ray with extremely short wavelength and strong penetration would cause the serious damage to the detectors and staff. Therefore, it is important to develop gamma ray shielding materials with outstanding radiation shielding performance.

As the rapid development of aerospace and nuclear industries, higher requirements are raised for the service life of detectors and the safety of staff. Gamma ray with extremely short wavelength and strong penetration would cause the serious damage to the detectors and staff. Therefore, it is important to develop gamma ray shielding materials with outstanding radiation shielding performance.

However, the traditional Lead shielding material cannot suitable for further commercial applications due to its heavy weight and high toxicity. Therefore, it is very urgent to develop alternative lightweight materials with the excellent radiation shielding performance, alleviating the radiation risks and reducing the costs.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Xiaohong Wu from School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China, and co-workers have developed a lightweight MAPbI3/epoxy composite prepared via a crystal plane engineering strategy. These composites delivered excellent radiation shielding performance against gamma rays and was 10 times higher than the epoxy.

MAPbI3 with altered crystal planes plays a determining role in the gamma-ray shielding performance of the corresponding composites. Crystal plane engineering was shown to be an effective strategy to regulate the electron density of MAPbI3/epoxy composites, thereby controlling the possibility of collision between the incident gamma rays and MAPbI3/epoxy composites. The reported method and technique will open new avenues for designing and developing high-efficiency radiation shielding materials.

These scientists summarize the mechanism whereby crystal plane engineering regulates the gamma-ray shielding performance of MAPbI3/epoxy composites:

"When gamma rays (59.5 keV) reach the MAPbI3/epoxy composites, interaction between the incident gamma ray and the (110) plane or (220) plane induces the photoelectric effect. The electron density of the (110) plane is higher than that of the (220) plane.

Therefore, it could be deduced that the attenuation of the incident gamma ray by the (110) plane is greater than that of the (220) plane because of the more effective collisions between the incident photons and extranuclear electrons. In other words, MAPbI3/epoxy composites with more (110) planes exhibited improved gamma-ray shielding performance."

"Crystal plane engineering is a useful strategy for the preparation of MAPbI3/epoxy composites with the aim of enhancing the gamma-ray shielding performance by increasing the electron density. The present work provides essential guidelines for the design and synthesis of high-efficiency radiation-shielding materials." they added.

Research Report:Crystal plane engineering of MAPbI3 in epoxy-based materials for superior gamma-ray shielding performance


Related Links
Changchun Institute of Optics, Fine Mechanics And Physics
Space Technology News - Applications and Research

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TECH SPACE
Phantoms return from beyond the Moon with valuable data on cosmic radiation doses
Cracow, Poland (SPX) Dec 09, 2022
Together with the Orion spacecraft of the Artemis I mission, as part of the MARE experiment, two human phantoms equipped with numerous cosmic rays detectors are to land on Earth. The information gathered by the detectors will for the first time verify the knowledge, crucial for the presence of humans in deep space, of the effects of cosmic rays on the health of the astronauts who are to live and work in an environment devoid of the protective effects of our planet's magnetosphere. Of the numerous ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...