...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Copernicus LSTM Expansion mission helping climate change adaptation

Copernicus LSTM Expansion mission helping climate change adaptation

Written by  Wednesday, 09 November 2022 09:11
Write a comment
Madrid, Spain (SPX) Nov 08, 2022
The Land Surface Temperature Monitoring (LSTM) programme led by Airbus has successfully passed the Preliminary Design Review (PDR). The approval of this milestone with ESA confirms that the satellite design is compliant with all mission requirements ensuring that mission objectives and user needs will be met. LSTM is part of the Copernicus programme established to fulfil the need among Eur

The Land Surface Temperature Monitoring (LSTM) programme led by Airbus has successfully passed the Preliminary Design Review (PDR). The approval of this milestone with ESA confirms that the satellite design is compliant with all mission requirements ensuring that mission objectives and user needs will be met.

LSTM is part of the Copernicus programme established to fulfil the need among European policy-makers to access accurate and timely information services to better manage the environment, understand and mitigate the effects of climate change and ensure civil security. LSTM addresses three key climate elements of concern: farming and food security, irrigation and water scarcity, and urban heat islands and energy efficiency.

"By measuring global temperature exchanges, LSTM will help shed light on how to adapt to climate change, particularly in support of agriculture management services. It is the first Copernicus mission awarded to a Spanish company and the third ESA mission to be primed by Airbus, after CHEOPS and Ingenio," said Luis Guerra, responsible for Airbus Space Systems in Spain. "The programme development is on schedule thanks to a huge team effort and we are on track for launch of the first of the two satellites in 2028."

The main objective of LSTM is to enable global monitoring of the evapotranspiration (ET) rate at field scale by capturing the variability of Land Surface Temperature (LST), allowing more robust estimates of field water productivity. This is a key parameter which can be used to improve water resource management in agriculture to secure food production. Water productivity and irrigation efficiency are difficult to measure in situ at scale, this is why Earth observation satellites are needed to quantify these processes. Water stress in plants can be determined with thermal infrared (TIR) observations, days and even weeks before it becomes noticeable in visible and near infrared observations. This information can help farmers to use natural resources more effectively in a more sustainable manner.

As a complementary objective, thermal observations offer a wide range of additional services by monitoring drought and land degradation, urban heat islands and excess heat generation in city areas (electric power stations, warnings to older and physically weaker individuals, smart urban developments), cryosphere health (permafrost, glacier lakes), coastlines, coral reefs and inland water management and natural hazards (fires, volcanoes).

As a complementary objective, thermal observations offer a wide range of additional services by monitoring drought and land degradation, urban heat islands and excess heat generation in city areas (power stages, warnings to older and physically weaker individuals, smart urban developments), cryosphere health (permafrost, glacier lakes), coastlines, coral reefs and inland water management and natural hazards (fires, volcanoes).

LSTM is one of the six Copernicus Expansion Sentinel missions being developed by the European Space Agency (ESA) and the European Commission. The contract, worth euro 390 million, was signed in November 2020. In its role of mission prime, Airbus Defence and Space in Spain is responsible for the satellite design, integration and test, up to the point of in-orbit commissioning and transfer to operations. Airbus leads an industrial consortium of 87 subcontractors on the programme across 19 European countries.

The mission includes two identical satellites, each one with a mass of 1,300 kg and a power generation capacity of 1,600 Wh. Both satellites will fly in a Low Earth Orbit (LEO) constellation at 651 km with local observation time at 13:00 over Europe, which corresponds to the highest stress time for crops. The minimum lifetime of each satellite is seven years but the satellite's components are designed to last for 12 years, potentially operating up to and beyond 2040.

The Toulouse site of Airbus in France is responsible for the instrument design, integration and testing up to delivery to the satellite prime. The state-of-the-art thermal infrared instrument is being developed in Toulouse and will be the first spaceborne instrument to implement the thermal infrared-5 band at 12 microns enabling provision of 20 times greater spatial and temporal resolution (400 pixels of 50x50m fit into the 1000x1000m pixels of previous missions) and a revisit time of just two days at the equator.

The satellites will be compatible with the European launchers Vega-C (nominal) and Ariane 6 (backup) with the first launch planned for 2028 and the second for 2030.

Overall, Airbus is responsible for the spacecraft or payload on three out of six new generation Copernicus Environment and Earth observation missions: LSTM, CRISTAL and Rose-L, and is providing critical equipment to all six.

The Copernicus Sentinels are a fleet of dedicated EU-owned satellites, designed to deliver the wealth of data and imagery that are central to the European Union's Copernicus environmental programme. The European Space Agency is in charge of the space component, responsible for developing the family of Copernicus Sentinel satellites on behalf of the European Union and ensuring the flow of data for the Copernicus services, while the operations of the Copernicus Sentinels have been entrusted to ESA and EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites. Six new missions were selected in 2020 to join the fleet of Copernicus Sentinels and expand the current capabilities.


Related Links
LSTM Copernicus
Earth Observation News - Suppiliers, Technology and Application

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EARTH OBSERVATION
Airbus and Space Compass to target Japanese market for mobile and EO solutions
London (SPX) Nov 08, 2022
Airbus HAPS Connectivity Business (Airbus HAPS) has signed a Letter of Intent (LOI) with Space Compass Corporation of Japan (Space Compass) for a cooperation agreement to service the Japanese market with mobile connectivity and earth observation services from the Stratosphere with Airbus' record breaking Zephyr platform. Samer Halawi, Chief Executive of Airbus HAPS, commented on the agreement: "Our dedicated team will be working closely with Space Compass to offer 4G/5G low-latency mobile services ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...