...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

A step towards quantum gravity

Written by  Monday, 15 August 2022 09:32
Write a comment
Sherman TX (SPX) Aug 15, 2022
In Einstein's theory of general relativity, gravity arises when a massive object distorts the fabric of spacetime the way a ball sinks into a piece of stretched cloth. Solving Einstein's equations by using quantities that apply across all space and time coordinates could enable physicists to eventually find their 'white whale': a quantum theory of gravity. In a new article in EPJ Historica

In Einstein's theory of general relativity, gravity arises when a massive object distorts the fabric of spacetime the way a ball sinks into a piece of stretched cloth. Solving Einstein's equations by using quantities that apply across all space and time coordinates could enable physicists to eventually find their 'white whale': a quantum theory of gravity.

In a new article in EPJ Historical Perspectives on Contemporary Physics, Donald Salisbury from Austin College in Sherman, USA, explains how Peter Bergmann and Arthur Komar first proposed a way to get one step closer to this goal by using Hamilton-Jacobi techniques. These arose in the study of particle motion in order to obtain the complete set of solutions from a single function of particle position and constants of the motion.

Three of the four fundamental forces - strong, weak, and electromagnetic - hold under both the ordinary world of our everyday experience, modelled by classical physics, and the spooky world of quantum physics. Problems arise, though, when trying to apply to the fourth force, gravity, to the quantum world.

In the 1960s and 1970s, Peter Bergmann of Syracuse University, New York and his associates recognised that in order to someday reconcile Einstein's theory of general relativity with the quantum world, they needed to find quantities for determining events in space and time that applied across all frames of reference. They succeeded in doing this by using the Hamilton-Jacobi techniques.

This is in contrast to other researchers' approaches, including that of John Wheeler and Bryce DeWitt, who thought it only essential to find quantities of space that applied across all frames of reference. By excluding time, their solutions result in ambiguities in the way time develops, which are known as the problem of time.

Salisbury concludes that because the approach taken by Bergmann and associates resolves the ambiguity in the way time develops, their approach deserves more recognition by those exploring an eventual theory of quantum gravity.

Research Report:A history of observables and Hamilton-Jacobi approaches to general relativity


Related Links
Austin College
The Physics of Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



PHYSICS NEWS
Unlocking gravity's secrets at the smallest scales
Bethlehem PA (SPX) Aug 04, 2022
There are four fundamental forces that describe every interaction in nature: electromagnetism, the weak force, the strong force and gravity. While gravity, the mutual attraction that brings objects with mass together, may be the most familiar, there is still much to learn about its fundamental nature. Insights into gravity could lead to greater understanding of phenomena as abstract as the beginnings of the universe and as concrete as high-temperature superconductors. At very small scales sm ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

CONTACT THE AUTHOR

* Denotes Required Field
Personal information
Message

Interested in Space?

Hit the buttons below to follow us...