...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Final moments of planetary remnants seen for first time

Final moments of planetary remnants seen for first time

Written by  Wednesday, 16 February 2022 04:20
Write a comment
Warwick UK (SPX) Feb 10, 2022
The moment that debris from destroyed planets impacts the surface of a white dwarf star has been observed for the first time by astronomers at the University of Warwick. They have used X-rays to detect the rocky and gaseous material left behind by a planetary system after its host star dies as it collides and is consumed within the surface of the star. Published in the journal Nature

The moment that debris from destroyed planets impacts the surface of a white dwarf star has been observed for the first time by astronomers at the University of Warwick.

They have used X-rays to detect the rocky and gaseous material left behind by a planetary system after its host star dies as it collides and is consumed within the surface of the star.

Published in the journal Nature, the results are the first direct measurement of the accretion of rocky material onto a white dwarf, and confirm decades of indirect evidence of accretion in over a thousand stars so far. The observed event occurred billions of years after the formation of the planetary system.

The fate of most stars, including those like our Sun, is to become a white dwarf. Over 300,000 white dwarf stars have been discovered in our galaxy, and many are believed to be accreting the debris from planets and other objects that once orbited them.

For several decades, astronomers have used spectroscopy at optical and ultraviolet wavelengths to measure the abundances of elements on the surface of the star and work out from that the composition of the object it came from. Astronomers have indirect evidence that these objects are actively accreting from spectroscopic observations, which show 25-50% of white dwarfs with heavy elements such as iron, calcium, magnesium polluting their atmospheres.

Until now though, astronomers had not seen the material as it was pulled into the star.

Dr Tim Cunningham of the University of Warwick Department of Physics said: "We have finally seen material actually entering the star's atmosphere. It is the first time we've been able to derive an accretion rate that doesn't depend on detailed models of the white dwarf atmosphere. What's quite remarkable is that it agrees extremely well with what's been done before.

"Previously, measurements of accretion rates have used spectroscopy and have been dependent on white dwarf models. These are numerical models that calculate how quickly an element sinks out of the atmosphere into the star, and that tells you how much is falling into the atmosphere as an accretion rate. You can then work backwards and work out how much of an element was in the parent body, whether a planet, moon or asteroid."

A white dwarf is a star that has burnt up all its fuel and shed its outer layers, potentially destroying or unsettling any orbital bodies in the process. As material from those bodies is pulled into the star at a high enough rate it slams into the surface of the star, forming a shock-heated plasma. This plasma, with a temperature between 100,000 to a million degrees kelvin, then settles on the surface, and as it cools it emits X-rays that can be detected.

X-rays are similar to the light our eyes can see, but have much more energy. They are created by very fast-moving electrons (the outer shells of atoms, which make up all the matter around us). Commonly known for their use in medicine, in astronomy X-rays are the key fingerprint of material raining down on exotic objects such as black holes and neutron stars.

Detecting these X-rays is very challenging as the small amount that reaches Earth can be lost amongst other bright X-ray sources in the sky. So the astronomers took advantage of the Chandra X-ray Observatory, normally used to detect X-rays from black holes and neutron stars that are accreting, to analyse the nearby white dwarf G29-38.

With Chandra's improved angular resolution over other telescopes they could isolate the target star from other X-ray sources and viewed, for the first time, X-rays from an isolated white dwarf. It confirms decades of observations of material accreting into white dwarfs that have relied upon evidence from spectroscopy.

Dr Cunningham adds: "What's really exciting about this result is that we're working at a different wavelength, X-rays, and that allows us to probe a completely different type of physics.

"This detection provides the first direct evidence that white dwarfs are currently accreting the remnants of old planetary systems. Probing accretion in this way provides a new technique by which we can study these systems, offering a glimpse into the likely fate of the thousands of known exoplanetary systems, including our own Solar system."

Research Report: "A white dwarf accreting planetary material from X-ray observations"


Related Links
University of Warwick
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
Warps drive disruptions in planet formation in young solar systems
Warwick UK (SPX) Feb 07, 2022
A new study from the University of Warwick demonstrates the impact of passing stars, misaligned binary stars and passing gas clouds on the formation of planets in early star systems. Scientists have modelled how cosmic events like these can warp protoplanetary discs, the birthplaces of planets, in the early evolution of solar systems. Their results are published today in the Astrophysical Journal in a study funded by The Royal Society and the Engineering and Physical Sciences Research Council, part of U ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...