...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Adding foreign atoms to graphene does wonders to boost its properties

Adding foreign atoms to graphene does wonders to boost its properties

Written by  Wednesday, 08 September 2021 08:33
Write a comment
Daegu, South Korea (SPX) Sep 02, 2021
Few materials have stolen the limelight like graphene. Since its discovery, graphene has become the go-to for nearly any technology out there, thanks to its exceptional properties such as high surface area, chemical stability, and high mechanical strength and elasticity. However, despite its seemingly limitless applications, graphene's potential remains underutilized due to several factors

Few materials have stolen the limelight like graphene. Since its discovery, graphene has become the go-to for nearly any technology out there, thanks to its exceptional properties such as high surface area, chemical stability, and high mechanical strength and elasticity.

However, despite its seemingly limitless applications, graphene's potential remains underutilized due to several factors, most notably its single-atom thickness, chemical inertness, and the lack of an energy gap.

One way to overcome these limitations is by integrating graphene with other materials, such as metals, insulators, and semiconductors, to form composite structures with desirable properties.

For instance, researchers are adding metal oxides to graphene to create graphene monolayer/metal-oxide nanostructures (GML/MONSs) that have improved physical and chemical properties. However, depositing uniform layers of metal oxides over graphene without disturbing the characteristics of the graphene layer is extremely challenging.

In a new study published in Nano Energy, a team of materials scientists from South Korea has now developed GML/MONSs by using a low-temperature technique known as electrochemical deposition, in which they grew metal-oxide nanostructures exclusively on the native defect sites of graphene.

They achieved this by immersing a single-atom-thick graphene layer in a metal-oxide precursor solution. By adjusting the deposition time, the scientists were able to precisely deposit the metal oxide onto the graphene monolayer, creating composite structures with unique properties in the process.

"Metal-oxide integrated graphene monolayers with lower densities (=30 ug/cm2) possess fewer defects, whereas those with higher densities have synergistic characteristics," explains Professor Sungwon Lee from Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea, who was a part of the research team.

By controlling the thickness and density of the metal oxide, the scientists developed high energy density cobalt oxide (Co3O4)/GML-based micro-supercapacitors that could be used as a power source, and ultrathin zinc oxide (ZnO)/GML-based photoresistors that possessed excellent flexibility and wearability.

The scientists are excited about the future prospects of their novel methodology. "This new class of heterostructures could be adopted for the fabrication of non-toxic and low-cost energy conversion and storage devices as well as the development of ultrathin, lightweight, and skin-mountable devices that can be integrated with real-time health monitoring systems," comments Prof. Lee.

The team's findings pave the way for the development of biocompatible, durable, eco-friendly, and ultralight graphene-based materials.

Research Report: "Multifunctional Metal-oxide Integrated Monolayer Graphene Heterostructures for Planar, Flexible, and Skin-mountable Device Applications"


Related Links
Daegu Gyeongbuk Institute Of Science And Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



CARBON WORLDS
Creation of the most perfect graphene
Daejeon, South Korea (SPX) Aug 26, 2021
A team of researchers led by Director Rod Ruoff at the Center for Multidimensional Carbon Materials (CMCM) within the Institute for Basic Science (IBS), including graduate students at the Ulsan National Institute of Science and Technology (UNIST), have achieved growth and characterization of large area, single-crystal graphene that has no wrinkles, folds, or adlayers. It can be said to be the most perfect graphene that has been grown and characterized, to date. Director Ruoff notes, "This pioneeri ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...