...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Young star system reveals gravitational instabilities of planet formation process

Young star system reveals gravitational instabilities of planet formation process

Written by  Friday, 18 June 2021 03:56
Write a comment
Washington DC (UPI) Jun 17, 2021
A chaotic, young star system, located 400 light-years from Earth, has offered astronomers new insights into the planet formation process. Observations of the stellar system Elias 2-27 - made using the Atacama Large Millimeter/submillimeter Array, or ALMA - confirmed the presence of significant gravitational instabilities, a phenomenon scientists have long suspected played an important

A chaotic, young star system, located 400 light-years from Earth, has offered astronomers new insights into the planet formation process.

Observations of the stellar system Elias 2-27 -- made using the Atacama Large Millimeter/submillimeter Array, or ALMA -- confirmed the presence of significant gravitational instabilities, a phenomenon scientists have long suspected played an important role in planet formation.

Scientists have long known that planets emerge from the large disks of gas and dust frequently found circling young starts. However, the details of this emergence -- the formation process -- have been difficult to decipher.

Now, for the first time, scientists have used gas velocity data to directly measure the mass of a protoplanetary disk.

The breakthrough, described in a pair of papers published Thursday in the Astrophysical Journal, suggests gravitational instabilities, in addition to other kinds of structural chaos, help facilitate planet formation.

"How exactly planets form is one of the main questions in our field," lead researcher Teresa Paneque-Carreño, a recent graduate of the Universidad de Chile, said in a press release. "However, there are some key mechanisms that we believe can accelerate the process of planet formation."

"We found direct evidence for gravitational instabilities in Elias 2-27, which is very exciting because this is the first time that we can show kinematic and multi-wavelength proof of a system being gravitationally unstable," said Paneque-Carreño, now a doctoral student at the University of Leiden and the European Southern Observatory. "Elias 2-27 is the first system that checks all of the boxes."

In addition to being gravitationally unstable, with a large portion of the system's mass contained within the protoplanetary disk, ALMA observations revealed Elias 2-27 to host a pair of spiral arms -- a features never before seen around a single star.

Followup surveys using the full spectrum of ALMA's observational bands confirmed the presence of these multidimensional arms carved by density waves. The fresh observations also showed an influx of fresh cosmic material was likely responsible for the disk's vertical asymmetry and velocity perturbations.

"The Elias 2-27 star system is highly asymmetric in the gas structure," said Paneque-Carreño. "This was completely unexpected, and it is the first time we've observed such vertical asymmetry in a protoplanetary disk."

While the latest findings have confirmed a number of theories about gravitational instabilities and spiral arms, there are other aspects of Elias 2-27 that scientists still don't have an explanation for, such as a band of missing material within the inner half of the protoplanetary disk.

The authors of the new study are hopeful that future ALMA observations will help them solve the remaining mysteries of protoplanetary disk dynamics and uncover the secrets of the planet formation process.

"Previous measurements of protoplanetary disk mass were indirect and based only on dust or rare isotopologues," said Benedetta Veronesi, a graduate student at the University of Milan and postdoctoral researcher at École normale supérieure de Lyon. "With this new study, we are now sensitive to the entire mass of the disk."

"This finding lays the foundation for the development of a method to measure disk mass that will allow us to break down one of the biggest and most pressing barriers in the field of planet formation," said Veronesi, lead author of one of the two papers.

"Knowing the amount of mass present in planet-forming disks allows us to determine the amount of material available for the formation of planetary systems, and to better understand the process by which they form."


Related Links
Stellar Chemistry, The Universe And All Within It

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



STELLAR CHEMISTRY
Cosmic cartographers map nearby Universe revealing the diversity of star-forming galaxies
Charlottesville VA (SPX) Jun 09, 2021
A team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has completed the first census of molecular clouds in the nearby Universe, revealing that contrary to previous scientific opinion, these stellar nurseries do not all look and act the same. In fact, they're as diverse as the people, homes, neighborhoods, and regions that make up our own world. Stars are formed out of clouds of dust and gas called molecular clouds, or stellar nurseries. Each stellar nursery in the Un ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...