...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • The Milky Way may be swarming with planets with oceans and continents like here on Earth

The Milky Way may be swarming with planets with oceans and continents like here on Earth

Written by  Monday, 22 February 2021 09:26
Write a comment
Copenhagen, Denmark (SPX) Feb 23, 2021
Astronomers have long been looking into the vast universe in hopes of discovering alien civilisations. But for a planet to have life, liquid water must be present. The chances of that finding scenario have seemed impossible to calculate because it has been the assumption that planets like Earth get their water by chance if a large, ice asteroid hits the planet. Now, researchers from the GL

Astronomers have long been looking into the vast universe in hopes of discovering alien civilisations. But for a planet to have life, liquid water must be present. The chances of that finding scenario have seemed impossible to calculate because it has been the assumption that planets like Earth get their water by chance if a large, ice asteroid hits the planet.

Now, researchers from the GLOBE Institute at the University of Copenhagen have published an eye-opening study, indicating that water may be present during the very formation of a planet. According to the study's calculations, this is true for both Earth, Venus and Mars.

'All our data suggest that water was part of Earth's building blocks, right from the beginning. And because the water molecule is frequently occurring, there is a reasonable probability that it applies to all planets in the Milky Way. The decisive point for whether liquid water is present is the distance of the planet from its star', says Professor Anders Johansen from the Centre for Star and Planet Formation who has led the study that is published in the journal Science Advances.

Using a computer model, Anders Johansen and his team have calculated how quickly planets are formed, and from which building blocks. The study indicates that it was millimetre-sized dust particles of ice and carbon - which are known to orbit around all young stars in the Milky Way - that 4.5 billion years ago accreted in the formation of what would later become Earth.

'Up to the point where Earth had grown to one percent of its current mass, our planet grew by capturing masses of pebbles filled with ice and carbon. Earth then grew faster and faster until, after five million years, it became as large as we know it today. Along the way, the temperature on the surface rose sharply, causing the ice in the pebbles to evaporate on the way down to the surface so that, today, only 0.1 percent of the planet is made up of water, even though 70 percent of Earth's surface is covered by water', says Anders Johansen, who together with his research team in Lund ten years ago put forward the theory that the new study now confirms.

The theory, called 'pebble accretion', is that planets are formed by pebbles that are clumping together, and that the planets then grow larger and larger.

Anders Johansen explains that the water molecule H2O is found everywhere in our galaxy, and that the theory therefore opens up the possibility that other planets may have been formed in the same way as Earth, Mars and Venus.

'All planets in the Milky Way may be formed by the same building blocks, meaning that planets with the same amount of water and carbon as Earth - and thus potential places where life may be present - occur frequently around other stars in our galaxy, provided the temperature is right', he says.

If planets in our galaxy had the same building blocks and the same temperature conditions as Earth, there will also be good chances that they may have about the same amount of water and continents as our planet.

Professor Martin Bizzarro, co-author of the study, says: 'With our model, all planets get the same amount of water, and this suggests that other planets may have not just the same amount of water and oceans, but also the same amount of continents as here on Earth. It provides good opportunities for the emergence of life', he says.

If, on the other hand, it was random how much water was present on planets, the planets might look vastly different. Some planets would be too dry to develop life, while others would be completely covered by water.

'A planet covered by water would of course be good for maritime beings, but would offer less than ideal conditions for the formation of civilisations that can observe the universe', says Anders Johansen.

Anders Johansen and his research team are looking forward to the next generation of space telescopes, which will offer far better opportunities to observe exoplanets orbiting a star other than the Sun.

'The new telescopes are powerful. They use spectroscopy, which means that by observing which type of light is being blocked from the planets' orbit around their star, you can see how much water vapour there is. It can tell us something about the number of oceans on that planet', he says.

Research paper


Related Links
University Of Copenhagen - The Faculty Of Health And Medical Sciences
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
On the quest for other Earths
Zurich, Switzerland (SPX) Feb 18, 2021
In the search for planets capable of sustaining life, an international research team with members from ETH has taken a significant step forward. As the researchers reported recently in the journal Nature Communications, they found signs of a Neptune-sized planet in the Alpha Centauri star system, a mere 4.4 light years away from Earth. This exoplanet is located in a zone that may offer suitable conditions for life. The team was able to collect data with unprecedented sensitivity, thus registering ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

CONTACT THE AUTHOR

* Denotes Required Field
Personal information
Message

Interested in Space?

Hit the buttons below to follow us...